# Lecture 09 <br> 13.3-13.5: Velocity and normal vectors of a curve 

Jeremiah Southwick

February 6, 2019

## Things to note

Exam 1 is on Monday. Study guide will be posted soon (or has been posted?)

Quiz 04 is today (vector-valued derivatives, integrals, arc length).
Friday will be a review day with no quiz.
Office hours canceled today.

## Last class

## Definition

Let $\overrightarrow{\mathbf{r}}(t)=f(t) \overrightarrow{\mathbf{i}}+g(t) \overrightarrow{\mathbf{j}}+h(t) \overrightarrow{\mathbf{k}}$ be smooth and let $a \leq t \leq b$.
Then the length of $\overrightarrow{\mathbf{r}}$ from $t=a$ to $t=b$ is

$$
L=\int_{a}^{b} \sqrt{\left(\frac{d f}{d t}\right)^{2}+\left(\frac{d g}{d t}\right)^{2}+\left(\frac{d h}{d t}\right)^{2}} d t
$$

## Arc length parameter

We can turn the arc length formula into a function if we think of one of the bounds as a variable.

## Arc length parameter

We can turn the arc length formula into a function if we think of one of the bounds as a variable.

## Definition

The arclength parameter with base point $t_{0}$ is

$$
s(t)=\int_{t_{0}}^{t} \sqrt{\left(\frac{d f}{d \tau}\right)^{2}+\left(\frac{d g}{d \tau}\right)^{2}+\left(\frac{d h}{d \tau}\right)^{2}} d \tau
$$

## Arc length parameter

We can turn the arc length formula into a function if we think of one of the bounds as a variable.

## Definition

The arclength parameter with base point $t_{0}$ is

$$
s(t)=\int_{t_{0}}^{t} \sqrt{\left(\frac{d f}{d \tau}\right)^{2}+\left(\frac{d g}{d \tau}\right)^{2}+\left(\frac{d h}{d \tau}\right)^{2}} d \tau
$$

Example
Find the arclength parameter of the helix with base point 0 .

## Arc length parameter

We can turn the arc length formula into a function if we think of one of the bounds as a variable.

## Definition

The arclength parameter with base point $t_{0}$ is

$$
s(t)=\int_{t_{0}}^{t} \sqrt{\left(\frac{d f}{d \tau}\right)^{2}+\left(\frac{d g}{d \tau}\right)^{2}+\left(\frac{d h}{d \tau}\right)^{2}} d \tau
$$

## Example

Find the arclength parameter of the helix with base point 0 . The arclength parameter is

$$
\begin{gathered}
s(t)=\int_{0}^{t} \sqrt{(-\sin (\tau))^{2}+(\cos (\tau))^{2}+1^{2}} d \tau=\int_{0}^{t} \sqrt{1+1} d \tau \\
=\sqrt{2} \tau]_{0}^{t}=\sqrt{2} t
\end{gathered}
$$

## Unit tangent vector

The are several important unit vectors associated with a smooth space curve. The first is the unit tangent vector.

Definition
Let $\overrightarrow{\mathbf{r}}(t)$ be a smooth curve. Let $\overrightarrow{\mathbf{v}}(t)=\frac{d \overrightarrow{\mathbf{r}}}{d t}$. Then the unit tangent vector $\overrightarrow{\mathbf{T}}$ of $\overrightarrow{\mathbf{r}}$ is

$$
\overrightarrow{\mathbf{T}}:=\frac{\overrightarrow{\mathbf{v}}}{\|\overrightarrow{\mathbf{v}}\|}
$$

## Recall

We can visualize $\frac{d \vec{r}}{d t}$ geometrically as the tangent vector to the space curve.


## Picture

The vector $\overrightarrow{\mathbf{T}}$ points in the same direction as $d \overrightarrow{\mathbf{r}} / d t$ but with length 1.

$\overrightarrow{\mathbf{T}}$ example
Example
Let $\overrightarrow{\mathbf{r}}(t)=(1+3 \cos (t)) \overrightarrow{\mathbf{i}}+(3 \sin (t)) \overrightarrow{\mathbf{j}}+t^{2} \overrightarrow{\mathbf{k}}$. Find $\overrightarrow{\mathbf{T}}$.
$\overrightarrow{\mathbf{T}}$ example
Example
Let $\overrightarrow{\mathbf{r}}(t)=(1+3 \cos (t)) \overrightarrow{\mathbf{i}}+(3 \sin (t)) \overrightarrow{\mathbf{j}}+t^{2} \overrightarrow{\mathbf{k}}$. Find $\overrightarrow{\mathbf{T}}$.
We have

$$
\overrightarrow{\mathbf{v}}(t)=\langle-3 \sin (t), 3 \cos (t), 2 t\rangle
$$

Then

$$
\begin{gathered}
\|\overrightarrow{\mathbf{v}}\|=\sqrt{(-3 \sin (t))^{2}+(3 \cos (t))^{2}+(2 t)^{2}}= \\
\sqrt{9 \sin ^{2}(t)+9 \cos ^{2}(t)+4 t^{2}}=\sqrt{9+4 t^{2}}
\end{gathered}
$$

Lastly, $\overrightarrow{\mathbf{T}}$ is $\overrightarrow{\mathbf{v}}$ divided by $\|\overrightarrow{\mathbf{v}}\|$.

$$
\begin{aligned}
& \overrightarrow{\mathbf{T}}=\frac{\overrightarrow{\mathbf{v}}}{\|\overrightarrow{\mathbf{v}}\|}=\frac{\langle-3 \sin (t), 3 \cos (t), 2 t\rangle}{\sqrt{9+4 t^{2}}} \\
& =\left\langle\frac{-3 \sin (t)}{\sqrt{9+4 t^{2}}}, \frac{3 \cos (t)}{\sqrt{9+4 t^{2}}}, \frac{2 t}{\sqrt{9+4 t^{2}}}\right\rangle .
\end{aligned}
$$

## Recall

Recall that if a vector-valued function $\overrightarrow{\mathbf{r}}$ always has a fixed length, then it has the property that $\overrightarrow{\mathbf{r}} \cdot \frac{d \overrightarrow{\mathbf{r}}}{d t}=0$.
As we showed,

$$
\frac{d}{d t}[\overrightarrow{\mathbf{r}}(t) \cdot \overrightarrow{\mathbf{r}}(t)]=0 \Rightarrow \frac{d \overrightarrow{\mathbf{r}}}{d t} \cdot \overrightarrow{\mathbf{r}}(t)+\overrightarrow{\mathbf{r}}(t) \cdot \frac{d \overrightarrow{\mathbf{r}}}{d t}=0 \Rightarrow 2 \overrightarrow{\mathbf{r}}(t) \frac{d \overrightarrow{\mathbf{r}}}{d t}=0
$$

which gives the desired result.
$\overrightarrow{\mathrm{T}}$ is normal to its derivative

We have $\overrightarrow{\mathbf{T}}=\frac{\vec{v}}{\|\overrightarrow{\mathbf{V}}\|}$ is a vector of fixed length (length 1 ).

We have $\overrightarrow{\mathbf{T}}=\frac{\vec{v}}{\|\overrightarrow{\mathbf{V}}\|}$ is a vector of fixed length (length 1 ).
We have $\overrightarrow{\mathbf{T}}$ is tangent to the curve.

We have $\overrightarrow{\mathbf{T}}=\frac{\vec{v}}{\|\overrightarrow{\mathbf{V}}\|}$ is a vector of fixed length (length 1 ).
We have $\overrightarrow{\mathbf{T}}$ is tangent to the curve.
Combining these facts, $\frac{d \overrightarrow{\mathrm{~F}}}{d t}$ is orthogonal to the curve.

We have $\overrightarrow{\mathbf{T}}=\frac{\vec{v}}{\|\overrightarrow{\mathbf{V}}\|}$ is a vector of fixed length (length 1 ).
We have $\overrightarrow{\mathbf{T}}$ is tangent to the curve.
Combining these facts, $\frac{d \overrightarrow{\mathrm{~F}}}{d t}$ is orthogonal to the curve.
$\frac{d \overrightarrow{\mathrm{~T}}}{d t}$ always points toward the 'inside' of the space curve, or in the direction that the curve is going.

## Unit Normal vector

We define the unit normal vector of a space curve in terms of $\frac{d \vec{T}}{d t}$.

## Unit Normal vector

We define the unit normal vector of a space curve in terms of $\frac{d \overrightarrow{\mathbf{T}}}{d t}$.
Definition
The vector function

$$
\overrightarrow{\mathbf{N}}=\frac{\frac{d \overrightarrow{\mathrm{~T}}}{d t}}{\left\|\frac{d \vec{T}}{d t}\right\|}
$$

is the (principal) unit normal vector of $\overrightarrow{\mathbf{r}}(t)$, when it exists.

## Unit Normal vector

We define the unit normal vector of a space curve in terms of $\frac{d \overrightarrow{\mathrm{~F}}}{d t}$.
Definition
The vector function

$$
\overrightarrow{\mathbf{N}}=\frac{\frac{d \overrightarrow{\mathbf{T}}}{d t}}{\left\|\frac{d \overrightarrow{\mathrm{~F}}}{d t}\right\|}
$$

is the (principal) unit normal vector of $\overrightarrow{\mathbf{r}}(t)$, when it exists.
To find $\overrightarrow{\mathbf{N}}$ given $\overrightarrow{\mathbf{r}}$, we calculate in order $\overrightarrow{\mathbf{v}},\|\overrightarrow{\mathbf{v}}\|, \overrightarrow{\mathbf{T}}, d \overrightarrow{\mathbf{T}} / d t$, $\|d \overrightarrow{\mathbf{T}} / d t\|$, and lastly $\overrightarrow{\mathbf{N}}$.
$\overrightarrow{\mathrm{N}}$ example

## Example

Let $\overrightarrow{\mathbf{r}}(t)=t \overrightarrow{\mathbf{i}}+\ln (\cos (t)) \overrightarrow{\mathbf{j}},-\pi / 2<t<\pi / 2$. Find $\overrightarrow{\mathbf{N}}$.
$\overrightarrow{\mathbf{N}}$ example
Example
Let $\overrightarrow{\mathbf{r}}(t)=t \overrightarrow{\mathbf{i}}+\ln (\cos (t)) \overrightarrow{\mathbf{j}},-\pi / 2<t<\pi / 2$. Find $\overrightarrow{\mathbf{N}}$.
We have

$$
\begin{gathered}
\overrightarrow{\mathbf{v}}(t)=\overrightarrow{\mathbf{i}}+\frac{-\sin (t)}{\cos (t)} \overrightarrow{\mathbf{j}} \text { and } \\
\|\overrightarrow{\mathbf{v}}(t)\|=\sqrt{1+\frac{\sin ^{2}(t)}{\cos ^{2}(t)}}=\sqrt{1+\tan ^{2}(t)}=\sqrt{\sec ^{2}(t)}=\sec (t) \\
\text { (because }-\pi / 2<t<\pi / 2)
\end{gathered}
$$

Thus we have

$$
\overrightarrow{\mathbf{T}}=\frac{1}{\sec (t)} \overrightarrow{\mathbf{i}}-\frac{\tan (t)}{\sec (t)} \overrightarrow{\mathbf{j}}=\cos (t) \overrightarrow{\mathbf{i}}-\sin (t) \overrightarrow{\mathbf{j}}
$$

$\overrightarrow{\mathbf{N}}$ example
Example
Let $\overrightarrow{\mathbf{r}}(t)=t \overrightarrow{\mathbf{i}}+\ln (\cos (t)) \overrightarrow{\mathbf{j}},-\pi / 2<t<\pi / 2$. Find $\overrightarrow{\mathbf{N}}$.
We have

$$
\begin{gathered}
\overrightarrow{\mathbf{v}}(t)=\overrightarrow{\mathbf{i}}+\frac{-\sin (t)}{\cos (t)} \overrightarrow{\mathbf{j}} \text { and } \\
\|\overrightarrow{\mathbf{v}}(t)\|=\sqrt{1+\frac{\sin ^{2}(t)}{\cos ^{2}(t)}}=\sqrt{1+\tan ^{2}(t)}=\sqrt{\sec ^{2}(t)}=\sec (t) \\
\text { (because }-\pi / 2<t<\pi / 2)
\end{gathered}
$$

Thus we have

$$
\overrightarrow{\mathbf{T}}=\frac{1}{\sec (t)} \overrightarrow{\mathbf{i}}-\frac{\tan (t)}{\sec (t)} \overrightarrow{\mathbf{j}}=\cos (t) \overrightarrow{\mathbf{i}}-\sin (t) \overrightarrow{\mathbf{j}}
$$

Taking derivatives, we find $\frac{d \overrightarrow{\mathbf{T}}}{d t}=-\sin (t) \overrightarrow{\mathbf{i}}-\cos (t) \overrightarrow{\mathbf{j}}$ and

$$
\left\|\frac{d \overrightarrow{\mathbf{T}}}{d t}\right\|=\sqrt{\sin ^{t}(t)+\cos ^{2}(t)}=1 \text {, so } \overrightarrow{\mathbf{N}}=-\sin (t) \overrightarrow{\mathbf{i}}-\cos (t) \overrightarrow{\mathbf{j}} .
$$

## Binormal vector $\vec{B}$

Now that we have $\overrightarrow{\mathbf{T}}$ and $\overrightarrow{\mathbf{N}}$, we can define the binormal vector.

## Binormal vector $\vec{B}$

Now that we have $\overrightarrow{\mathbf{T}}$ and $\overrightarrow{\mathbf{N}}$, we can define the binormal vector. Definition
The binormal vector $\overrightarrow{\mathbf{B}}$ of a curve in space is

$$
\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{T}} \times \overrightarrow{\mathbf{N}}
$$

## Binormal vector $\vec{B}$

Now that we have $\overrightarrow{\mathbf{T}}$ and $\overrightarrow{\mathbf{N}}$, we can define the binormal vector. Definition
The binormal vector $\overrightarrow{\mathbf{B}}$ of a curve in space is

$$
\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{T}} \times \overrightarrow{\mathbf{N}}
$$

Notice that since $\|\overrightarrow{\mathbf{B}}\|=\|\overrightarrow{\mathbf{T}}\|\|\overrightarrow{\mathbf{N}}\| \sin (\pi / 2)=1$, the vector $\overrightarrow{\mathbf{B}}$ is already a unit vector by definition, so we don't need to divide by its length.

## $\overrightarrow{\mathbf{B}}$ example

## Example

Take as above $\overrightarrow{\mathbf{T}}=\langle\cos (t),-\sin (t), 0\rangle$ and
$\overrightarrow{\mathbf{N}}=\langle-\sin (t),-\cos (t), 0\rangle$. Find $\overrightarrow{\mathbf{B}}$.

## $\overrightarrow{\mathbf{B}}$ example

## Example

Take as above $\overrightarrow{\mathbf{T}}=\langle\cos (t),-\sin (t), 0\rangle$ and
$\overrightarrow{\mathbf{N}}=\langle-\sin (t),-\cos (t), 0\rangle$. Find $\overrightarrow{\mathbf{B}}$.

We have

$$
\overrightarrow{\mathbf{B}}=\overrightarrow{\mathbf{T}} \times \overrightarrow{\mathbf{N}}=\left\langle 0-0,0-0,-\cos ^{2}(t)-\sin ^{2}(t)\right\rangle=\langle 0,0,-1\rangle
$$

In this case $\overrightarrow{\mathbf{B}}$ is a fixed vector, but in most cases $\overrightarrow{\mathbf{B}}$ will be a vector-valued function just like $\overrightarrow{\mathbf{T}}$ and $\overrightarrow{\mathbf{N}}$.

## Example no. 2

Find $\overrightarrow{\mathbf{T}}, \overrightarrow{\mathbf{N}}, \overrightarrow{\mathbf{B}}$ for $\overrightarrow{\mathbf{r}}(t)=\overrightarrow{\mathbf{r}}(t)=\left(e^{t} \cos (t)\right) \overrightarrow{\mathbf{i}}+\left(e^{t} \sin (t)\right) \overrightarrow{\mathbf{j}}+2 \overrightarrow{\mathbf{k}}$

